

When a river is dammed in the Mekong a tree falls in Brazil

Stockholm International Water Institute, 7th October 2015

Assoc. Prof. Jamie Pittock
Fenner School of Environment and Society, ANU & Visiting Researcher at ICWC/SIWI jamie.pittock@anu.edu.au

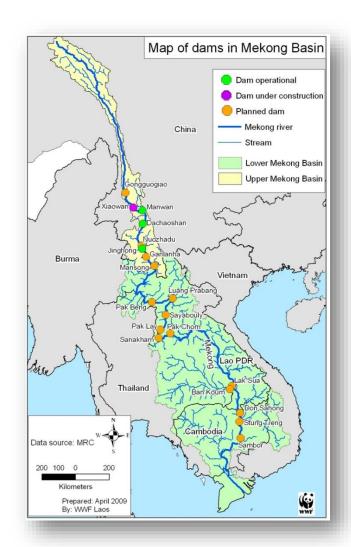
HYDROWORLD.com Sept 2010

 World Bank report supports hydropower development, integrated water resources management

WASHINGTON, D.C., U.S. 9/1/10 (PennWell) -- A newly-released report on the World Bank Group's water strategy calls for support for hydropower in developing countries, while urging a more integrated approach to water resources management. ... Specifically, the report, endorsed by the World Bank Board's Committee on Development Effectiveness (CODE), directs the Bank Group to: ...

• Scale-up support for hydropower, as the largest source of renewable and low-carbon

energy, including high-risk, high-reward infrastructure projects ...


China to boost hydropower capacity by 50 percent by 2015

BEIJING, China 9/1/10 (PennWell) -- China plans to boost its installed hydroelectric power capacity to 300 million kW by 2015 from the current 200 million in an effort to cut carbon dioxide emissions ... Government officials told media outlets that such an expansion is needed for China's goal to reduce its carbon dioxide emissions per unit of gross domestic product (GDP) by 40 to 45 percent by 2020. China promised at the Copenhagen Conference on global climate change last year that it would generate 15 percent of its power from non-fossil sources by 2020, up from the current 7.8 percent.

Scenario for Mekong basin dams

- Strategic Environmental Assessment data (ICEM 2010)
- > 88 basin dams by 2030
- ➤ Include 10% reservoir fisheries gains
- ➤ Replacement of the net loss in fish protein of -23.4 to 37.8%

Four options to replace lost fish protein

1. Import protein

2. Divert aquaculture & marine fish exports

3. Expand livestock production (Orr et al. 2012)

4. Expand protein-rich crop production

Example of livestock consumption data for Cambodia (FAO 2011)

	\	,			
ı	Livestock and milk	Quantity '000 t/yr			
	products	Production	Import	Export	"Food"
Cambodia	Beef and buffalo meat	73	0	0	73
	Eggs primary	22	0	0	22
	Milk	23	16	0	39
	Pig meat	117	0	0	117
	Poultry meat	28	0	0	28
	Sheep and goat meat	0	0	0	0
	Total	263	16	0	263

Livestock resource requirements

Requiring new pasture

Mekong livestock. © B. Pittock.

Scavenging livestock

Previous research:

Orr, S., Pittock, J., Chapagain, A., & Dumaresq, D. (2012). Dams on the Mekong River: Lost fish protein and the implications for land and water resources. *Global Environmental Change, 22*(4), 925-932. doi: 10.1016/j.gloenvcha.2012.06.002

Very conservative snapshot in time, no:

- Non-barrier impacts of dams on fish
- Resource requirements for scavenging animals
- Population increases of people
- Dietary change with wealth
- Climate and other global change impacts

Dams of and wat

Stuart Orr

^a WWF Internatio

^a WWF Internatio ^b Crawford Schoo

c WWF UK, Pando

d Fenner School o

New research: not all proteins are equal ... lysine

Source: FAO

Food stuff	Protein g/100g	Protein index: fish = 100	Lysine mg/100 g	Lysine index: fish = 100
Soy	38	202	2653	155
Ground nuts	25.6	136	1876	110
Fish	18.8	100	1713	100
Legumes/pulses	22.5	120	1683	98
Chicken	20	106	1590	93
Beef	17.7	94	1573	92
Pork	11.9	63	961	56
Offals	16	85	917	54
Eggs	12.4	66	863	50
Molluscs etc.	10	53	797	47
Seeds	18.1	96	585	34
Oil Crops	12.6	67	500	29
Wheat	12.2	65	374	22
Rice	7.5	40	299	17
Maize	9.5	51	254	15
Milk	3.5	19	248	14
Other veg	2.03	11	100	6
Fruit	0.98	5	52	3

Lysine sources in the Lower Mekong

Source: FAO

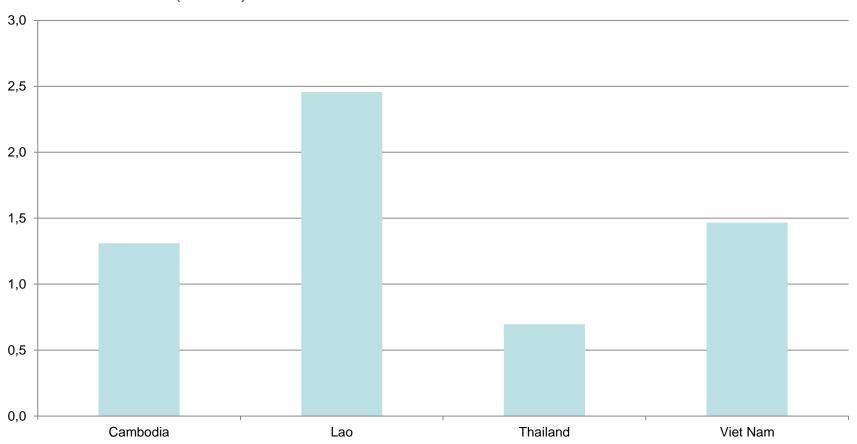
Lysine Supply	Cambodia %	Laos %	Thailand %	Vietnam %				
Total								
Vegetable	46	53	36	42				
Animal	53	46	63	57				
Vegetable Lysine								
Rice	41	47	39	33				
Maize	4	4	0	2				
Oil Crops	9	13	8	7				
Soy	29	27	27	24				
Pulses & Beans	13	2	11	18				
Other veg	1	9	1	1				
Ground Nuts	0	0	5	15				
Fruit	0	0	1	0				
Wheat	0	0	8	0				
Seeds	3	0	0	0				
Total	100	98	98	100				
Animal Lysine								
Fish	56	38	31	24				
Molluscs etc	2	0	1	6				
Pork	15	22	14	37				
Beef	12	19	6	5				
Chicken	4	8	24	11				
Offals	4	6	0	7				
Eggs	2	4	14	3				
Milk	3	1	8	4				
Total	99	99	98	98				

Maximum land required for lysine replacement (% change)

Lysine	Cambodia	Laos	Thailand	Vietnam
source				
Vegetable sources	59	22	11	6
Animal sources	155	47	10	7
Crop & animal sources	43	15	5	3
(km²)	(24,090)	(3,580)	(10,840)	(3,260)

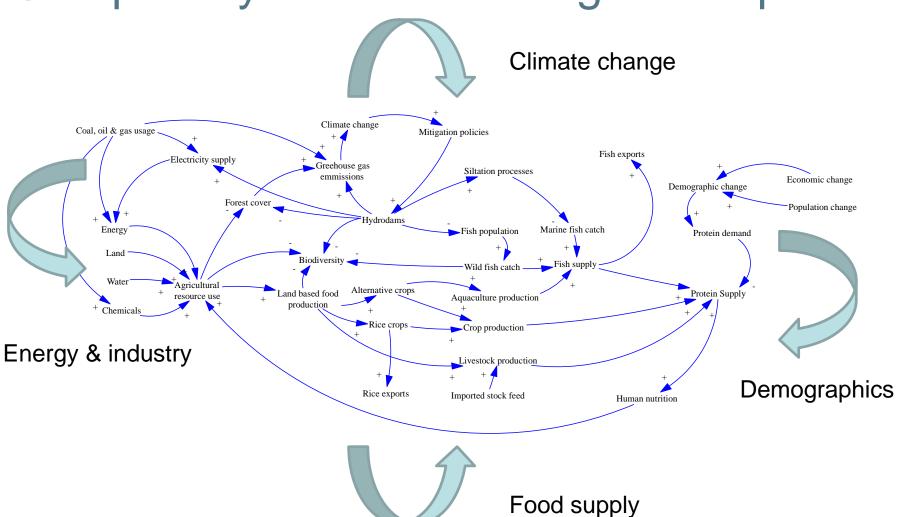
Comparison of land use change area:

- East Timor = $14,874 \text{ km}^2$
- Brunei = $5,765 \text{ km}^2$



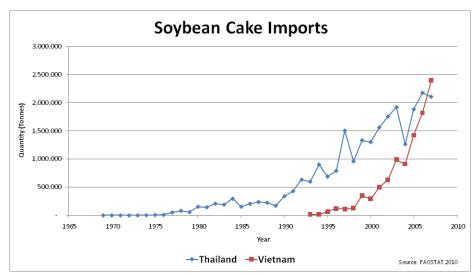
Average annual increase in agricultural land use 2002-2011

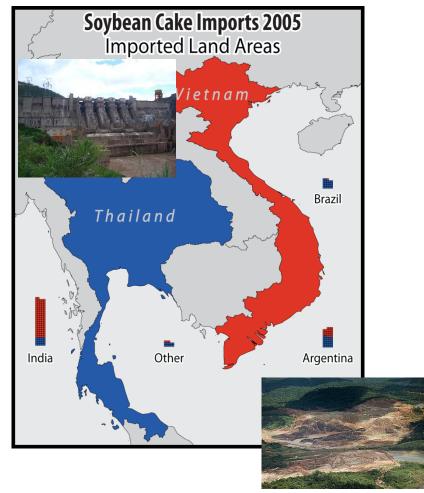
Source: FAO (2011)



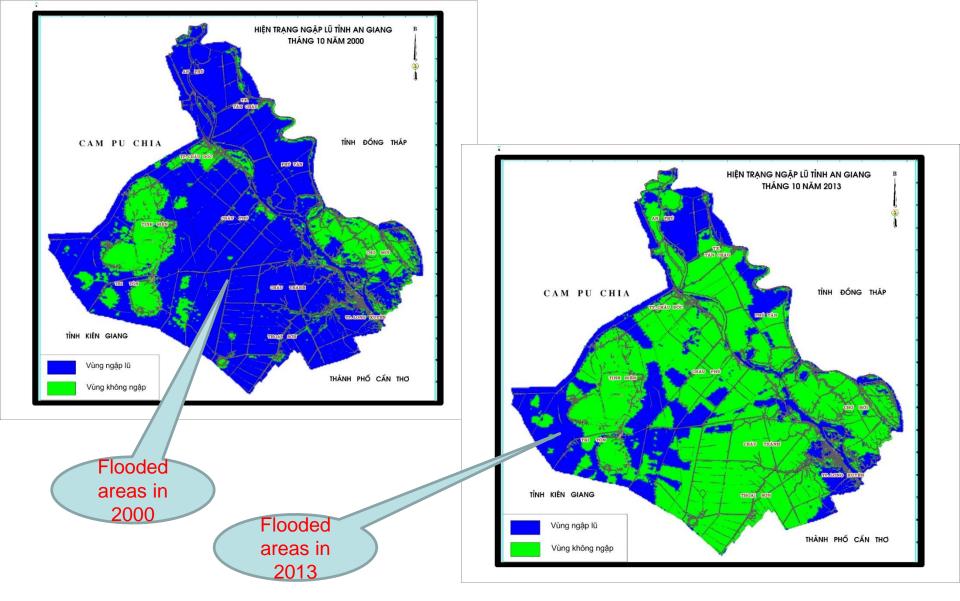
Power – lysine trade-off summary

Hydropower	50,000 - 64,750 MW feasible (LMB) 14,697 MW, or 23 - 28% on the mainstem
Wild fish	-23.4 to -37.8% net reduction
Aquaculture / marine fish	-31% TH fish exports -51% VN fish exports
Livestock	+7 - 155% pasture land
Crops	+6 - 59% crop land


Complex system reinforcing development



Feedstock imports: soybean cake



Produced on a land area of 19,895 km²

Graphics ©: Figures, David Dumaresq; Manwan Dam, Ute Collier; Amazonas deforestation, WWF US / Ricardo Lisboa

Areas covered by high dikes in An Giang between 2000 and 2013, Mekong delta, Vietnam

Food prices and poverty (ADB 2008)

Country	Population	% in	Vulnerability	Vulnerability to
	(million)	poverty	to 10%	10% increase
			increase in	in food prices
			food prices	(people)
			(%)	
Cambodia	14.5	35	4.4	610,000
Laos	6.8	31	5.1	280,000
Thailand	65.9	10	0	0
Viet Nam	87.0	15	2.4	1,980,000
Total	174.2			2,870,000

Summary for Vietnam

- Pasture land increase of 3% to 8%
- Increase in imports
- Import / export and opportunity costs aquaculture
- Higher protein prices impact poor (2.4 M)
- Fewer replacement options than Thailand

Mekong River, Vietnam. © B. Pittock.

- Investments in dams
- UN Watercourses
 Convention

Summary for Cambodia

- Pasture land increase of 3,750 to 19,350 km² (25% to 129%), plus land inundated
- Import / export and opportunity costs
- Higher protein prices impact poor (4.4 M)
- Very few affordable replacement options

Ankor Wat. © B. Pittock.

UN Watercourses
 Convention

Water – energy – food nexus conclusions:

- Hydropower will improve energy security but at the cost of food supply
- 2. A lot of land and water is required for replacement of food sources globally
- 3. The poor will be impacted
- Governments need to explain how food security will be enhanced

Fishers, Mekong delta, Vietnam. © E. Kemf / WWF Cannon.