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[1] There are few methodologies for the use of climate change projections in decision
making or risk assessment processes. In this paper we present an approach for climate risk
assessment that links bottom-up vulnerability assessment with multiple sources of climate
information. The three step process begins with modeling of the decision and identification
of thresholds. Through stochastic analysis and the creation of a climate response function,
climate states associated with risk are specified. Climate information such as available from
multi-GCM, multirun ensembles, is tailored to estimate probabilities associated with these
climate states. The process is designed to maximize the utility of climate information in the
decision process and to allow the use of many climate projections to produce best estimates
of future climate risks. It couples the benefits of stochastic assessment of risks with the
potential insight from climate projections. The method is an attempt to make the best use of
uncertain but potentially useful climate information. An example application to an urban
water supply system is presented to illustrate the process.
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1. Introduction
[2] The implications of climate change are a growing

concern for water managers. Even simple extrapolation of
current trends in temperature makes clear that a warming
climate can significantly affect hydrologic conditions with
negative impacts on many facets of society and ecosystems.
The impacts on water resources derived from the projec-
tions of general circulation models (GCM) present a range
of concerns, including increased drought, increased floods,
reduced mean water availability and harmful effects on
aquatic ecosystems [Kundzewicz et al., 2007]. The sum of
these troubling effects, although highly uncertain, moti-
vates efforts to assess and manage potential climate change
impacts.

[3] The primary approach to assessing climate change
impacts has been through the use of GCM projections of
future precipitation and temperature. The raw climate vari-
ables from GCMs have significant biases which must be
corrected prior to their use and are produced at coarse spa-
tial scales. Downscaled and bias corrected climate variables
[e.g., Wood et al., 2004; Tebaldi et al., 2005; Hidalgo
et al., 2008] then serve as input to hydrologic models, the
output of which is used to drive water systems models,

which are used to estimate the impacts on variables of soci-
etal interest.

[4] This approach to climate change impact assessment
provides information about the potential impacts associated
with anthropogenic climate change according to the avail-
able projections. However, from a decision making per-
spective, it is often difficult to utilize the results due to a
number of incongruities between the typical results and
the needs of decision makers [Wilby and Desai, 2010;
Hallegatte, 2009; Stainforth et al., 2007; Rohmsdahl and
Pyke, 2009]. An alternative is to use stochastic methods for
hazard identification and to use climate projections to esti-
mate relative probabilities of these hazards, yielding risk
estimates. Such an approach is described here.

[5] Here we describe a new approach to using climate in-
formation within a decision making framework that links
bottom-up, stochastic vulnerability analysis with top down
use of GCM projections. To describe this methodology we
introduce the term ‘‘decision-scaling,’’ which refers to the
use of a decision analytic framework to reveal the scaling
of climate information that is needed to best inform the de-
cision at hand. In decision scaling, the premise is that dis-
cussion of appropriate downscaling methods should follow
and be informed by the formal modeling of the decision of
interest. It facilitates the use of a large number of climate
sources, including GCM runs, for decision making under
climate change. It differs from current methodologies by
utilizing the climate information in the latter stages of the
process within a decision space to guide preferences among
choices. The methodology first identifies the climate condi-
tions that are relevant to the decision and then uses that in-
formation to link to what is credible in available climate
information. The underlying premise is that since a given
ensemble of GCM-based climate projections represent the
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irreducible lower bound on the range of climate uncertainty
[see Stainforth et al., 2007], they should not be used to
identify risks, but rather as a potential prioritization weight-
ing on risks.

[6] A novel aspect of the approach is that it uses decision
analysis as a framework for characterizing the climate
future, and consequently, climate projections, in terms of
their position relative to decision thresholds. In doing so, it
uses stochastic analysis for risk identification and uses
GCM projections for risk estimation, assigning probabil-
ities to hazards, thus linking the two methods. As a result,
climate information may be tailored to address key con-
cerns and transparent assessment of the effect of a particu-
lar source of climate information (e.g., a particular GCM or
downscaling approach) in terms of influence on the deci-
sion. Probabilities may be derived as a quantification of the
range of climate change information available and are best
understood as model based or subjective. They represent a
‘‘weighting’’ of the risks identified via stochastic analysis
[Raiffa and Schlaifer, 1961]. The results do not attempt to
provide ‘‘optimal’’ solutions in the traditional decision ana-
lytic sense. Instead, the approach identifies the best decision
conditional on the weight of the climate projection-based
evidence. Given the uncertainty of future climate (and other)
changes, consideration for enhancing the robustness of such
a decision is warranted.

[7] This paper introduces the methodology and illustrates
it with a conceptual example of water supply reliability.
The next section reviews current approaches to assessing
impacts and risks of climate change to the water sector, fol-
lowed by the presentation of our proposed process. An illus-
trative example is presented and the paper ends with some
discussion of limitations and concluding remarks.

2. Background on Climate Change Impact
Assessment

[8] The dominant approach to climate change impact
analysis uses GCM projections as the driver of the assess-
ment [Wilby and Dessai, 2010]. These studies use a ‘‘top
down’’ methodology that begins with climate change pro-
jections, downscales them to match the spatial and tempo-
ral scales of hydrologic models, and uses the hydrologic
projections of climate change to drive water resource sys-
tems models. Vano et al. [2010] provides a state of the sci-
ence example of climate change impact assessment on an
urban water supply system using this approach. Twenty
GCM projections are used to project hydrologic changes
and subsequently changes in reservoir storage and reliabil-
ity using water resources systems models of water systems
in the Puget Sound region. Similar approaches have been
applied in Wiley and Palmer [2008], Christensen and
Lettenmaier [2007], Brekke et al. [2009] and Manning
et al. [2009]. Rajagopalan et al. [2009] used stochastic sim-
ulation of climate changes to streamflow including assumed
trends consistent with most GCM projections to assess
impacts on the Colorado River. Vicuna et al. [2010] use
sampling stochastic dynamic programming to model reser-
voir operations and adaptation with a large number of GCM
runs. Lopez et al. [2009] demonstrate the utility of a large
ensemble of GCM projections from Phase 3 of the Coupled
Model Intercomparison Project (CMIP3) and from a

perturbed physics ensemble based on a single GCM, to
assess implications for a water resources system, finding the
results differed in important ways by choice of ensemble.

[9] In these approaches the uncertainties are described by
using projections from multiple GCMs. In some cases
extreme members of a GCM ensemble are chosen to attempt
to capture the range of uncertainty, although the true range
of climate uncertainty remains unknown [Stainforth et al.,
2007]. If the range of climate scenarios is very wide, it
presents the planner with difficult choices. For example, the
ranges might include one scenario where no action is neces-
sary and another where very costly investments are neces-
sary [Brekke et al., 2008, 2009]. There are considerable
potential regrets to planning for either. Given the costs typi-
cally associated with addressing some of the worst case
impacts, a water manager is unlikely to be comfortable com-
mitting resources on the basis of a single or small number of
projections.

[10] Due to the sizeable uncertainties associated with cli-
mate change, Lempert et al. [2004] advocate the ‘‘assess
risk of policy’’ approach as more appropriate for decision
making under climate change uncertainty. Risk-based ‘‘bot-
tom up’’ methodologies have been proposed for the assess-
ment of climate change risks. Jones [2001] described a
risk-based approach that focuses on identifying risks using
GCM projections and managing them. Johnson and Weaver
[2009] describe a similar methodology for identifying and
addressing risks. Risk-based approaches are more directly
applicable to decision making processes but do not circum-
vent the difficulty in using GCM projections. The method-
ologies generally still use a top down approach to GCM
projection use, incorporating them as starting points for
risk analysis. Lempert et al. [2006] describes this use of
GCM projections as ‘‘scenario generators.’’

[11] A problem with this approach is that GCM projec-
tions are relatively poor scenario generators. They describe
a ‘‘lower bound on the maximum range of uncertainty’’
[Stainforth et al., 2007]. Even a large multimodel ensemble
provides relatively few samples in a typical analysis relative
to the size possible through stochastically generated risk
analysis. Larger ensembles are becoming available, such as
via the climate prediction.net experiment [Stainforth et al.,
2004] but still face issues of biases that may preclude the
discovery of plausible climate risks. Stochastic analysis ena-
bles sampling a wider range of possible climate changes but
typically is unable to incorporate the physical response of
the Earth’s climate to increasing greenhouse gas emissions
in the way that a GCM can. One approach would be to de-
velop new stochastic methods combined with robust signals
from GCM [Groves et al., 2008; Rajagopalan et al., 2009].

[12] There is growing interest in methods for assessing
climate risk or adaptation planning that are not based on
GCM projections [Desai et al., 2009; Wilby and Desai,
2010]. One alternative is the use of stochastic methods to
sample a much wider range of possible scenarios to assess
risk [U.S. Bureau of Reclamation, 2009; Rajagopalan
et al., 2009]. Stochastic hydrology is largely dedicated to
estimating risk in water resources systems (hydrologic pre-
diction is another major research area). While stationary
statistics may be able to capture the variability of nonsta-
tionary timeseries, the link with GCM projections or other
climate change information remains nascent.
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[13] Prudhomme et al. [2010] describe an approach that
is similar to the process described here, first creating a
response function to simulate future flood risk as a function
of climate changes. The function is then used to visualize
the implications of an ensemble of climate change projec-
tions. Wilby and Dessai [2010] describe a process for adap-
tation planning that emphasizes addressing observed
climate variability and change while also assessing the
effectiveness of the adaptations for future risks. The pro-
cess incorporates future climate narratives to inform the
assessment. Each of these papers demonstrates a frame-
work that uses climate information in innovative ways and
improves its utility for informing decisions.

[14] The approach described here is similar in premise to
these studies but uses decision analysis as a framework to
link information needed for decisions identified through
bottom-up stochastic assessment with projections of future
climate from sources such as GCMs. The application of de-
cision analysis to water resources under climate change
uncertainty is surprisingly rare in the literature. Hobbs
et al. [1997] provides an example, applying decision analy-
sis to an irreversible decision on the construction of new
infrastructure in the Great Lakes to manage climate change
impacts. The future is summarized with two future states of
the world, one with climate change and one without,
reflecting the lingering uncertainty at the time as to whether
climate change was real. Groves and Lempert [2007] use a
decision analytic approach to define ‘‘policy relevant’’ soci-
oeconomic scenarios for water resources planning in Cali-
fornia. The methodology described in this paper uses a
similar application of decision analysis to define climate
states that correspond to decisions.

3. Methodology
[15] The execution of this methodology inverts the pro-

cess commonly used in climate change analysis which
begins with GCM projections and propagates the projec-
tions through simulation and/or optimization models to pro-
duce an estimation of the impacts of those projections (see
references above). Our method begins with decision analy-
sis, using it as a tool to identify climate states that favor a
particular decision over others. In the risk assessment appli-
cation, the decision is one of taking action or not taking
action. Through sampling of the effects of possible changes
in climate on the system, the climate conditions that cross
decision thresholds are identified. A decision threshold is a
point where the optimal decision changes as a function of
the climate conditions. In decision theory terminology, the
climate conditions are the state variables. Through this pro-
cess a climate state is identified as the range of climate var-
iables that favors a particular decision option.

[16] Once the decision-influencing climate states are
identified, climate information is tailored to estimate proba-
bilities associated with those states. By estimating probabil-
ities for broad categories of climate conditions, two benefits
are realized. First, the specificity of information needed
from the GCMs is reduced and the results may be more reli-
able [Mastandrea et al., 2010]. Second, since the climate
states are tied directly to the decision, the climate informa-
tion that is generated will be directly tied to the conditions
that influence the decision, thus establishing relevance. We

change the question we are attempting to answer from
‘‘what will the future climate be?’’ which is very difficult
with an infinite number of possibilities, to ‘‘is the climate
that favors action A more or less likely than the climate that
favors action B?’’ Appropriately tailored climate informa-
tion, including GCM projections and stochastically gener-
ated conditions from historical and paleodata, and the
application of expert judgment, may provide informative
answers to this question when approached in the manner
described here. With relevance established, the climate sci-
ence effort can focus on assessing and possibly improving
the credibility of the specific climate information sought.

[17] The methodology consists of three steps which are
explained below. Figure 1 presents a schematic of the
process.

3.1. Identification of Climate Concerns, Hazards, and
Thresholds

[18] The first stage of the analysis identifies the climate
conditions that cause risks and/or favor a particular deci-
sion to be preferred over another. The initial part of the pro-
cess is conducted through discussion with stakeholders to

Figure 1. Diagram of the bottom up climate risk assess-
ment and management process.
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identify the climate conditions that have caused problems
historically or that are otherwise of concern. The historical
record is a useful starting point for identifying how climate
has impacted the system in the past and the particular cli-
mate episodes that are challenging [Wilby and Dessai,
2010]. General summaries of climate change projections
from the literature or such as those available from the Inter-
governmental Panel on Climate Change (IPCC) reports on
regional impacts are useful guides for this discussion.

[19] An additional aim of the discussions is to identify
thresholds of performance indicators and system perform-
ance that when exceeded signify the need for adaptive
actions. For example, a level of system performance that is
the minimal acceptable might be such a threshold; any-
thing worse and changes to the system would be necessary.
In some cases, expected benefit-cost analysis (BCA) can be
used to specify decision thresholds. For example, a benefit
cost ratio of one or greater might be a threshold for a
proposed project. Values of less than one would signify an
unacceptable project. In other cases, such as in cases
related to environmental functioning where benefits and
costs are very difficult to estimate, decision thresholds can
be specified based on stakeholder-defined performance
indicators as described by analysts and stakeholders. In the
conceptual example presented below, reliability of water
supply delivery is used as the performance indicator and a
decision threshold is specified as a reliability level of 95%
as a general planning standard. In an ongoing study of the
Great Lakes, thresholds on acceptable lake levels were
defined for a variety of stakeholder groups, some based on
estimated economic impacts and others not [Brown et al.,
2011].

[20] The understanding of the decision and context is
then formalized through the creation of a decision system
model that simulates system performance as a function of
climate inputs. The model is typically composed of sup-
porting models, such as hydrologic models, reservoir oper-
ations models or a planning model for large, multiobjective
water resource systems. The climate related inputs depend
on the models, but generally include precipitation and
temperature. In this approach, the models are used to char-
acterize the response of the system to changes in climate.
The resulting characterization is used for the discovery of
climate risks and the development of a climate response
function.

3.2. Risk Discovery: Identifying Climate Conditions
That Cause Risks

[21] The next step uses the decision system model to
identify and characterize climate states related to decision
outcomes. The risk discovery step consists of three aspects.
A classic sensitivity analysis to identify problematic cli-
mate conditions, the parsing of the climate space according
to optimal or best decisions, and the development of a ‘‘cli-
mate response function.’’ These steps are described below.

[22] Risk discovery begins with a sensitivity analysis of
the water resources system. This may be accomplished
using a large stochastic input series (e.g., tens of thousands
of years) that samples a wide variety of possible climate
conditions. Other methods are possible, including paramet-
rically varying the climate state of the inputs (as demon-
strated in the example later in the paper).

[23] Whether created stochastically or deterministically,
the key aspect is that the future climate space is sufficiently
sampled to evaluate the decision outcome in all remotely
plausible climate conditions. Note that at this point in the
analysis, the climate range is not limited by concerns over
the probability of those climate conditions actually occur-
ring. Those concerns, which are real, are addressed in
section 3.3.

[24] The result is a set of atmospheric or hydrologic vari-
ables, (Xt) and performance indicators (YT) representing a
statistic of performance over a period T. As the focus of
this analysis is climate related impacts, T is a long-term
(30 years or greater) period, and the statistics of Xt are
paired with statistics of performance metrics, YT, over a
concurrent period. From this set, a relationship between cli-
mate and performance can be derived. The degree to which
the performance metrics can be explained by climate is
assessed to determine a subset of climate statistics, vT, where
vT ¼ f (Xt), that most influence the performance indicators,
YT. For example, Vogel and Bolognese [1995] show that the
reliability of many reservoirs can be estimated with the
mean, standard deviation and serial correlation of reservoir
inflows, contingent on water demand. The result is a reduced
set of influential climate conditions that can be explored to
identify climate conditions of concern in terms of the rele-
vant performance indicators. Note that the spatial resolution
of �T may differ from Xt. For example, a possible informa-
tive statistic on climate time scales may be the spatial aver-
age of a distributed climate variable.

3.2.1. Climate Response Function
[25] In many applications it may be possible and useful

to construct a ‘‘climate response function,’’ g(vT) where
YT ¼ g(vT). The climate response function acts as a surro-
gate model, representing the results of a series of models in
a computationally efficient form that links climate variables
directly to performance indicators. Shao and Krishnamurty
[2008] review development of surrogate models. The cli-
mate response function allows performance indicators to be
estimated from a large number of GCM runs. This allows
the impediment of computational burden to be overcome in
climate impact analysis, for which large ensembles are con-
sistently recommended [see Brekke et al., 2008; Raisenen
and Palmer, 2001]. In water resources systems analysis,
the climate response function may simulate a hydrologic
model and a water system model used sequentially. How-
ever, note that the climate response function is derived in
terms of spatial domains and temporal resolution that char-
acterize the system response to climate. Just as climate is
characterized by the statistics of weather, the response may
be characterized based on the statistics of the response of
process models (i.e., hydrology and systems models) on
weather time scales.

[26] An informative aspect of the climate response func-
tion is that it illuminates the degree to which the perform-
ance indicator values can be explained in terms of climate
variables. For a system in which the climate response func-
tion provides a good fit, the indication is that climate has a
large influence on performance, such as exhibited by large
elasticities to climate change. The degree to which decision
relevant performance indicators can be explained in terms
of climate statistics is often not clear a priori. In several
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cases, various measures of water supply performance have
been shown to be well modeled with statistics of inflows
[Vogel et al., 1999]. Our work has similarly found strong
relationships for the occurrence of extreme levels on the
Great Lakes of North America and for various performance
indicators for the Niger River Basin [Brown et al., 2011;
Brown, 2011].

[27] On the contrary, where the fit of the climate response
function is poor, this indicates climate may not have a large
influence on the performance indicators or that the influence
is difficult to succinctly characterize. As a result, it would
be difficult to gain much utility for decision making from a
major climate research effort. Short-term flooding in small
basins that are dominated by local weather is one example
where such an approach may provide limited insight.

[28] Note that the temporal and spatial scale of the vt can
be varied to determine a set that best explains performance
over that period. For example, one could compare the explan-
atory power of a 30 year mean climate vis a vis a 50 year
mean climate. These scales can also be chosen to maximize
the credibility of the source of climate change projections,
e.g., experimenting with large spatial scales of the vT because
GCM projections are typically more reliable at greater spatial
scales.

3.2.2. Definition of Climate States With Decision
Model

[29] With this set of climate conditions and responses,
the decision analytic framework is used to parse the climate
space into states that correspond to the optimal decision
over those climate conditions. Often in decision analysis,
the future states of the world are defined a priori and the
optimal decision for each state is selected in preposterior
analysis [Raiffa and Schlaifer, 1961]. An alternative is to
define states according to the decision that dominates for
that range of climate conditions. This method has been
applied in weather forecast value analysis and seasonal
forecast value use [Brown, 2004] but not previously to cli-
mate change adaptation.

[30] A formulation of a decision made under climate
change uncertainty can be described as

mind r ¼ �iLðd; �C
i ÞPrð�C

i Þ; (1)

where the objective is to select the decision d from the set
of decisions D ¼ {d1, d2, . . . , dn} that minimizes the risk
or expected loss, r(d) given the loss function L(d, �C

i Þ and
the future states of the world, �C

i , and the probabilities asso-
ciated with the future states of the world, Prð�C

i Þ. In our
application, the optimal decision for parametrically varied
future climate conditions is calculated and �C

i is defined as
the climate state for which a decision is optimal (Figure 2).
The climate states are defined in the same terms as the cli-
mate response function, namely the vT. The formulation of
the decision map shows this discrete representation of the
states of the future climate �C

i , in this case three climate
states (i ¼ 1, 2, 3) that each correspond to optimal decisions
1, 2, and 3. The estimation of the probabilities is addressed
in step 3.

[31] The parsing of the climate space into states has sev-
eral advantages. It makes clear to stakeholders and analysts
the specific climate conditions that pose risk or favor a

particular decision. When those climate conditions are pre-
sented as changes in climate from the present, stakeholders
gain an intuitive sense of what potential climate changes
represent to them. In addition, the climate change analysis
can be tailored to focus on estimating the relative probabil-
ity of these climate states. If a particular state is especially
threatening, research can be focused accordingly. While
thresholds related to decisions are used in the example
described below, one could also parse the climate space
according to the scales of impact.

[32] The use of thresholds on acceptable performance of
the system requires a special form of the loss function. In
place of a continuous loss function, the threshold-based
function is binary, corresponding to whether performance
is acceptable or unacceptable:

�ðd; �C
i Þ ¼ 1 if Yt < Y t

¼ 0 if Yt � Y t;
(2)

where �(–) is the binary form of the loss function and Yt is
the threshold value of the performance metric. In (1) the
product Lðd; �C

i ÞPrð�C
i Þ represents the expected loss, i.e.,

risk. Using �(–), the product reduces to the probability of
occurrence of unacceptable or acceptable system perform-
ance which is equivalent to the probability of the climate
states themselves. Thus the estimation of the probability of
the climate states directly addresses the probability that a
given decision, for example, action or no action, is optimal.
Alternately, a continuous loss function could also be used
and thresholds based on the expected level of loss.

3.3. Tailoring Climate Information to Assist Decision
Making

[33] The final step is the process of tailoring climate
information to aid in decision making related to climate
risks and opportunities. The process leverages the insights

Figure 2. Example of optimal decisions given differing
climate conditions. The decision rule creates climate sectors
for which subjective probabilities can be estimated from
GCM projections or other sources of climate information.
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gleaned in earlier steps to focus tailoring of the climate
change analysis to provide the information that is most use-
ful for decision making. That is, with the relevant climate
information already identified as the climate states relating
to decisions, the climate science effort can focus on pro-
ducing credible projections that are relevant. In a simple
two alternative decision, such as ‘‘Take Action’’ or ‘‘Do
Not Take Action,’’ the climate space is divided into two
sectors corresponding to the climate state for each decision
alternative.

[34] Decision scaling consists of using climate informa-
tion to estimate ‘‘climate informed’’ probabilities associ-
ated with each state, with a goal of estimating which state
is more probable than the other. The term ‘‘climate
informed’’ is used to indicate probabilities based on climate
projections which may be derived from GCMs or paleodata
or stochastically generated and consequently, may differ
from probabilities indicated solely by the historic record.

[35] Given the irreducible uncertainties associated with
climate change, estimating the true probabilities is not pos-
sible. Rather, the assumption is that the skill of the climate
models may be informative for estimating the relative
probabilities, whether one climate state is more likely than
another in the future. In some cases, the probability of each
may be close enough that it would not justify specifying
one as more likely than another. In many other cases, the
climate information may provide some confidence that one
climate state and thus one decision is favored over another.
It is important to note that the utility of the process depends
on the decision as well as the climate information. Model
agreement toward a particular climate outcome (e.g., wetter
or drier in the future) is not a prerequisite for informative
results.

[36] The primary challenge to applying decision analysis
to decision making under climate change uncertainty is the
uncertain skill associated with GCM projections. The chal-
lenge is we do not know Prð�C

i Þ, the probabilities associated
with the future climate states. Instead, we have GCM pro-
jections of uncertain skill. This can be described by a
Bayesian decision model of decision making with imper-
fect information, where GCM projections are the source of
information. In this case the decision can be described as

min d r ¼ �i�ðd; �C
i ÞPrð�C

i j�
F;C
j Þ (3)

where Prð�C
i j�

F;C
j Þ is the probability of future climate state

i given forecast �F;C
j . The second term relates the expecta-

tion of future climate given, or posterior to, the projections.
This posterior probability of a future climate state given a
forecast can be estimated based on the skill of the forecast
according to Bayes theorem:

Prð�C
i j�

F;C
j Þ ¼ Prð�F;C

j j�C
i ÞPrð�C

i Þ (4)

where Prð�F;C
j j�C

i Þ is the conditional probability of the fore-

cast, �F;C
j , given the climate state, �C

i and Prð�C
i Þ is the

prior probability of the climate state, �C
i , and the normaliz-

ing constant is suppressed for clarity. Thus, the posterior
probability of a future climate state based on the forecast
can be represented as the product of the prior probability of

the climate state i and the probability of the forecast of i
being correct.

[37] The challenge with climate change is we do not
have the repeated experiments and realizations to estimate
the forecast skill, Prð�F;C

j j�C
i Þ. Projections of the future

cannot be verified in the present, and verification of histori-
cal GCM simulations is limited by the short period of time
over which we might expect to see changes to mean cli-
mate as a result of anthropogenic greenhouse gas forcings
[Raisenan and Palmer, 2001]. Consequently, they are not
forecasts but projections. Thus we are unable to calculate a
posterior probability of the future climate states conditional
on the GCM projections and their skill as we would prefer
for Bayesian decision analysis.

[38] There is little evaluation of the skill of GCMs and
appropriate processing, such as downscaling, in terms of
their ability to provide insight for decisions [Mearns,
2010]. The decision-scaling approach provides a frame-
work for doing so. At present, in lieu of credible projection
skill estimates, there is diagnostic analysis of 20th century
GCM runs to summarize some insights that tend to improve
the trust one might have in the projections and increase
their credibility, essentially the value of Prð�C

i j�
F;C
j Þ. They

also describe limitations to the projections, including spa-
tial and temporal scales at which they have little skill.
Based on the evidence of various studies [Brekke et al.,
2009; Gleckler et al., 2008], we use multimodel super
ensembles to estimate Prð�C

i Þ and limit the use of projec-
tions to variables and scales for which skill is indicated in
historical runs. Since using equation (4) is not possible, we
describe Prð�C

i Þ as a subjective probability, which is easily
accommodated with Bayesian decision analysis [Hobbs
et al., 1997].

[39] The resulting process accommodates a variety of
approaches for estimating Prð�C

i Þ and thus for the use of cli-
mate projections. As presented here and previous analyses,
each GCM run is considered an equi-probable possible
future climate [Brekke et al., 2009; Vano et al., 2010;
Christensen and Lettenmaier, 2007]. Model agreement on a
climate state is considered an indication that that climate
state is more likely than others. Probability is assigned
according to the number of runs which fall into each
climate state sector [Raisanen and Palmer, 2001]. The
underlying assumption is that each run is equi-probable.
However, there are a number of alternative approaches and
their implications for decisions are not clear. The evalua-
tion of alternative processing approaches to GCM projec-
tions in terms of decisions is a subject of current work.

[40] At its best, the process described here provides a
framework for climate scientists and stakeholders to discuss
the generation and use of climate information posterior to
understanding how the climate information influences deci-
sions. The use of the binary loss function (2) serves to pre-
serve the probabilities, as they are not masked as a factor in
an expected loss value. The probabilities are seen primarily
as a prioritization weighting based on climate projections,
not as their actual probability of occurrence, and so the use
of expected values is avoided. The generation of probabil-
ities also occurs in the final step of the analysis, allowing
the implications of different sources of probabilities to be
clear to stakeholders, possibly as a ‘‘tie breaker’’ in some
cases. It is expected that this will result in the production of

W09537 BROWN ET AL.: DECISION SCALING—LINKING VULNERABILITY ANALYSIS W09537

6 of 12



more relevant climate information and better use of that in-
formation for decision making.

3.4. Residual Risk and Surprise Management

[41] In recognition of the limitations of any attempts to
project the future, we couple risk assessment with manage-
ment of residual risk and surprise. These are events that
may be deemed not cost effective (or by some other crite-
rion) to address directly, largely because they are consid-
ered unlikely. However, given climate uncertainty there are
two reasons that warrant additional attention to these kinds
of events. First, the estimation of hydrologic variables that
affect design is compromised by our limited ability to
anticipate the effects of climate variability and change.
Second, the estimated cost and benefits of decisions repre-
sent expected values based on uncertain probabilities. Both
effects, each of which is rooted in the challenge of nonsta-
tionarity, result in inaccurate risk calculations. As a result,
residual risk and surprises may be more significant than
any analysis portrays. Additional discussion of these con-
cerns is described in Brown and Baroang [2011].

4. Case Study of Municipal Water Supply
Reliability

[42] To illustrate the methodology described above, we
present a conceptual example of a stylized municipal sur-
face water supply system. This example is based on design
parameters of the Quabbin-Wachusett reservoir system which
supplies water to the metropolitan Boston area. The Quab-
bin-Wachusett reservoir system is located in central Massa-
chusetts and includes the Quabbin and Wachusett Reservoirs
with a total drainage area of 390 mi2 (1010 km2). The system
has a storage capacity of 477 billion gallons (1.8 km3) and an
active storage of 255 billion gallons (0.96 km3) where the
active storage is the difference between the spillway storage
and the minimum pool volume. The active storage is used
for all calculations. The Quabbin-Wachusett reservoir sys-
tem must release approximately 102 mgd (386,000 m3 d�1)
to meet required minimum streamflows downstream. All of
the streamflow calculations are adjusted to account for the
required releases.

4.1. Identification of Climate Hazard and Thresholds

[43] The first step in the process is the characterization
of the system and identification of relevant decision thresh-
olds. The reservoir system has an estimated ‘‘firm’’ yield of
300 mgd. Although demand has exceeded that value in the
past water conservation efforts have resulted in the demand
decreasing to a level well below the 300 mgd safe yield.
The safe yield is used in all of the demand calculations. It
is important to note that the current demand for water is
significantly less and so the results of this analysis should
not be misconstrued as an estimation of actual future reli-
ability of this system under climate change.

[44] The decision system model in this case consisted of a
simulation model of the reservoir system and a statistical
model of reservoir inflows. The simulation model was cre-
ated in the Stella modeling environment and is previously
described in Fisher and Palmer [1995]. Annual reservoir
inflows were estimated based on regressions developed for
the northeastern U.S. Since the reservoir depends on over
year storage, the annual time step is appropriate as subannual

variability including changes in timing of streamflow, have
no impact on reliability. For this paper, log linear regression
equations for the mean and standard deviation of annual
streamflow for the northeastern United States [Vogel et al.,
1999] are used. These equations incorporate drainage area,
annual precipitation, and annual average temperature into
the calculation. The effectiveness of log linear regression
models for estimating streamflow in the humid Northeastern
U.S. is well documented [Vogel et al., 1999]. Regression
was used for simplicity for the purposes of this example and
is not essential. In a detailed analysis of a particular location,
a physically based model should be used to address concerns
related to extrapolation of hydrologic response to climate
change.

[45] With the system described in terms of the model,
the next step is to set thresholds on acceptable and unac-
ceptable performance. An acceptable water supply reliabil-
ity threshold was set at 95%. The threshold represents the
boundary between a reliability that would require action to
be taken (below 95%) and reliabilities for which no action
would be deemed warranted (95% or greater). In this illus-
trative example, the number is chosen arbitrarily as repre-
sentative of a typical water supply planning target. In a
detailed application, stakeholder discussions would be con-
ducted to elicit a reliability threshold that was meaningful
for their planning purposes. The setting of a decision
threshold is used to establish the link between the stake-
holders decision and the insight provided by the climate in-
formation. It allows the partitioning of the climate space
and consequently, the climate projections into those that
project action is required and those that do not.

4.2. Climate Risk Discovery

[46] A climate sensitivity analysis of the system was
conducted using 50,000 years of stochastically generated
monthly net basin supplies (NBS) (inflows less evapora-
tion) to the reservoir system. NBS were modeled with a
periodic moving average lag 1 autoregressive model. The
performance of the reservoir was quantified in terms of reli-
ability, the probability of not failing, i.e., delivering the
desired water volume demanded in each time period
[Hashimoto et al., 1982]. The results of the simulation anal-
ysis were then used to assess the climate sensitivity of the
system. The 50,000 year simulation was segmented into
50 year periods, representing periods of mean climate. For
each segment the reliability (N ¼ 50 years) and statistics of
NBS were calculated, including annual mean, monthly
mean, higher-order statistics and autocorrelation at several
lags. Exploratory data analysis revealed that the annual mean
explained the vast majority of the variance (R2 ¼ 0.98) in
system reliability for each 50 year segment. This result is
consistent with previous studies of reliability for systems
with over year storage [Vogel and Bolognese, 1995].

[47] The strong relationship between mean NBS and res-
ervoir reliability provided confidence that a climate response
function could be successfully derived in terms of climate
variables. Vogel et al. [2001] derived a model of reservoir
reliability in terms of statistics of inflow, specifically, the
mean, standard deviation and annual autocorrelation of
inflow, which is effectively a climate response function. The
reliability is linked directly with climate statistics that can be
derived directly from GCMs, namely precipitation and
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temperature through a hydrologic model. For the purposes of
this analysis, a simple statistical model was used. The result
represents a climate response function as the performance in-
dicator is expressed in terms of climate statistics, as demon-
strated in Vogel et al. [2001]. We utilize this simple model
for this example.

[48] Using the gridded sampling approach, values of pre-
cipitation and temperature can be sampled over a range
encompassing the output of all GCM-based or other plausi-
ble climate change projections. Historical values of stand-
ard deviation and serial correlation were held constant at
the historical values. For simplicity, increases in evapora-
tion from the reservoir surface due to temperature increases
were not considered.

[49] Figure 3 shows the resulting climate response func-
tion as a function of changes in mean temperature and pre-
cipitation. The figure shows that for a large region of the
climate space, the reliability function is relatively flat, indi-
cating low sensitivity to these climate changes. In the por-
tion of the space where temperature increases are large and
precipitation increases are small (far left corner), the reli-
ability falls rapidly. The analysis reveals that the climate
conditions of concern are those associated with increasing
temperature (associated with increased evapotranspiration
and decreased streamflow) and small increases in precipita-
tion (which do not overcome the increases in evapotranspi-
ration to increase streamflow).

[50] Next the decision analytic framework is used to
parse the climate space into two states, �C

1 corresponding to
no action as the optimal decision and �C

2 corresponding to the
action warranted decision. Figure 4 shows the climate space

partitioned by the decision threshold of 95% reliability. The
larger area indicates climate conditions pertaining to reliabil-
ity of greater than 95% while the smaller area in the upper
left corresponds to the climate conditions that warrant action.
This figure corresponds to Figure 2, where the climate space
is divided into regions corresponding to the optimal decision.

4.3. Estimation of Climate Informed Risks

[51] With the climate space divided into two states corre-
sponding to the decision outcomes, the final step of deci-
sion scaling is to quantify the evidence in terms of the
relative probability of those two sectors. The objective of
the climate analysis is to estimate the probabilities of these
climate states, Prð�C

i Þ, where �C
1 represents a problematic

climate and �C
2 indicates the climate conditions that are not

problematic.
[52] In this case, the projections of temperature and pre-

cipitation from 39 climate projections (emissions scenario
A1B) from the World Climate Research Programme’s
(WCRP’s) Coupled Model Intercomparison Project phase 3
(CMIP3) multimodel data set, runs were used to estimate
future reliability probabilistically. The projections were
obtained from a database of bias corrected and spatially dis-
aggregated climate change projections derived from CMIP3
data and served at: http://gdo-dcp.ucllnl.org/downscaled_
cmip3_projections/, described by Maurer et al. [2007]. Mean
annual temperature and precipitation were extracted for four
future time periods, 2000–2025, 2025–2050, 2050–2075, and
2075–2100. In each case the average over each 26 year pe-
riod is used as the estimate of the mean annual values of tem-
perature and precipitation in order to reduce the effects of

Figure 3. Reservoir reliability as a climate response function of departures from current mean temper-
ature (degrees C) and precipitation (mm yr�1).
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internal model variability in any individual run. These values
present climate ‘‘means’’ that are then input to the climate
response function which is defined in equivalent terms.

[53] Figure 5 shows mean annual precipitation and tem-
perature for each of the runs in each time period. In Figure 4,
mean climate change values averaged over 2000–2100 are
superimposed on the climate decision states. A plot of mean
climate variables such as Figure 4 without the decision space
underlain is often used in climate change analyses to choose
‘‘fence post’’ or the extreme points to ‘‘box’’ or encompass
the uncertainty. A plot like Figure 4 shows that the extremes
in terms of climate space may not be extreme in terms of the
decision space and so may not actually encompass the range
of possible impacts from a decision standpoint. Runs with
low-precipitation changes and moderately high increases in
temperature produce reliability values close to or below the
decision threshold but runs with the highest temperature
increases do not.

[54] The climate response function is then used to calcu-
late the reservoir reliability as a function of the precipitation
and temperature estimate for each GCM run and each time
period. The calculations require a small fraction of the com-
putation typically required in other approaches. Figure 6
shows a box plot of the reliability values for each of the 39
GCM runs and each time period. In each time period, the
highest values and the median reliability are well above the
threshold of 95%. However, there are a small number of
runs that are below the threshold and one run which is well
below. Although they may be considered to have low proba-
bility, awareness that such conditions are possible can be

valuable to a decision maker when considering risks and
surprises.

[55] The reliability values for each GCM run were then
used to estimate probability distributions of reliability as a
function of the climate change projections. The distribu-
tions were estimated using a nonparametric empirical prob-
ability distribution. The cumulative probability distribution
of reliability over each time period is shown in Figure 7. In
all four time periods the probability of �C

2 corresponding to
a reliability below the threshold of 95%, is low. For calcu-
lations of relative probability, the nonparametric cumula-
tive distribution functions were used.

[56] The relative probability of the two climate states are
estimated next. Figure 8 shows the probability of climate
conditions that favor no action �C

1 (reliability equal to or
greater than 95%) and the probability of �C

2 , climate condi-
tions favoring action (reliability less than 95%). In each
time period the probabilities estimated from this analysis
favor no action by a wide margin. According to the analy-
sis, the probability based on 39 GCM projections of climate
conditions causing an unacceptable decrease in reliability
is less than 15%.

5. Discussion
[57] While GCM projections are marked by considerable

uncertainty, the analysis framework shows that in this
example there is general consensus among them that the
climate conditions that warrant action are relatively less
probable than the conditions that favor no action. In this

Figure 4. Scatterplot of departures from present mean precipitation and temperature from GCM runs
superimposed on the decision states. Decisions states are identified corresponding to reliability greater
than 0.95 (No Action; Shaded) and less than 0.95 (Action). Note that changes are calculated as a func-
tion of current mean temperature (degrees C) and precipitation (mm yr�1).

W09537 BROWN ET AL.: DECISION SCALING—LINKING VULNERABILITY ANALYSIS W09537

9 of 12



case the evidence of the climate projections suggests that
no immediate action is warranted for addressing climate
change risk to the reliability of the reservoir system. While
this is the decision led to by the use of climate information,
the uncertainty associated with that information must remain
in mind. Assuming the stakeholders accept this decision, the
next step is consideration of the residual risk associated with
that decision. That is, if the decision is to take no action, the
risk that action should be taken remains. For example, there
is residual risk associated with the assumed continuation of
historical interannual variability (serial correlation and stand-
ard deviation) under future climate conditions.

[58] In the risk assessment exercise, it is worth consider-
ing the scenario where the serial correlation increases sig-
nificantly which would cause a decrease in reliability as
consecutive low-flow years would be more probable. Deci-
sion makers could strategize for mitigative responses to

multiyear droughts under that scenario. Also, the analysis
identified a single run that would result in a very low reli-
ability in comparison to the decision threshold and most
other runs. Although a single outlier run may be assumed
to have low probability, consideration should be given to
the possibility of surprise, that this low-probability climate
future became reality. At this point it would probably be
adequate to be aware of the possibility, monitor evolving
climate conditions and keep abreast of future, presumably
improved, climate model projections to see if this scenario
remains a possibility or becomes more probable. Planners
should not fall into the trap of believing that something that
is not likely is actually impossible.

[59] The methodology presented here is designed to
assist in the difficult process of incorporating uncertain cli-
mate information in decisions that are sensitive to climate

Figure 5. Scatterplot of mean precipitation and temperature for 39 climate projections averaged over
four time periods used in this study.

Figure 6. Box plot of reservoir reliability as a function of
GCM projections for the given time periods.

Figure 7. Cumulative distribution function (CDF) of res-
ervoir reliability based on GCM projections using a non-
parametric distribution (plotting position formula).
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uncertainty. One aspect of the analysis involves the crea-
tion of a climate response function. A climate response
function is created to link the decision relevant perform-
ance indicators to climate conditions. Through the creation
of this surrogate model, some accuracy is inevitably lost. In
the example presented here, the uncertainty in the climate
response function is not addressed. The loss of accuracy is
not likely to be significant for decision purposes relative to
the uncertainty associated with climate change. However,
in some cases the relationship between performance indica-
tors and statistics of climate may not be robust enough to
derive a climate response function. If the relationship
between climate changes and performance indicators is not
strong, it is an indication that any climate change analysis
methodology is unlikely to be effective. In this methodol-
ogy at least that finding is discovered prior to major efforts
to assess future climates from GCMs or other sources.

[60] The ability of the framework to accommodate large
and complex systems with multiple performance metrics
has not been demonstrated in the example provided. Large
systems often involve greater complexity for the decision
maker and for the modeling of the system. At present the
methodology is being applied to decisions related to very
large systems. The results of those studies will provide
insight as to the ultimate scope for the decision-scaling
approach, but the authors believe it is quite broad.

6. Conclusion
[61] This paper presents a methodology for climate risk

assessment of water resource systems that links bottom-up
stochastic analysis with the use of climate change projec-
tions. The process is innovative in that it inverts the typical
process of climate change assessments, here beginning with
a decision and proceeding back to the uncertain climate
change projections. Decision theory provides the analytic
framework that allows the linking of stochastic analysis and
GCM projections. The process identifies climate conditions
that are relevant to the decision and links those conditions to

what is credible from available climate information. The pro-
cess allows tailoring climate projections to estimate probabil-
ities of the climate states that are significant to the decision.
In this paper the process was applied to risk assessment of a
reservoir system, where the decision is to take action or not.
The process is general and accommodates weighting of
GCM projections, use of stochastic simulation and paleodata,
and expert opinion, although these are not presented here.

[62] The process is designed specifically to support deci-
sion making. Stochastic analysis or deterministic sampling
generates a much greater range of possibilities for the iden-
tification of risks. GCM projections are then able to
described which of these risks may be of more concern. The
estimation of probabilities associated with specific decision-
relevant climate states are not the true (and unknowable)
probabilities of those conditions but rather are best con-
strued as subjective probabilities, a weighting of the risks
identified. They provide a pathway for the incorporation of
uncertain but possibly useful climate information as one
contribution of expert opinion to the typically complex
human decision process. The decision-scaling approach also
provides a straightforward framework for evaluating the
implications in terms of the decision of alternative methods
for generating climate information.

[63] The example provided here examines water supply
reliability and the risk due to climate change. The simple
example allows clear demonstration of the analytic process.
The applicability of this methodology depends on the ability
of the analyst to summarize decision sensitivities to climate
change in a systematic way. We are currently exploring
application to larger and more complex water resource sys-
tems, including the Great Lakes of North America and the
Niger River Basin of West Africa.

[64] Acknowledgments. We acknowledge the modeling groups, the
Program for Climate Model Diagnosis and Intercomparison (PCMDI) and
the WCRP’s Working Group on Coupled Modeling (WGCM) for their
roles in making available the WCRP CMIP3 multimodel data set. Support
of this data set is provided by the Office of Science, U.S. Department of
Energy.

Figure 8. Probability of acceptable and unacceptable reliability based on GCM projections for the
given time periods.
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